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1.   INTRODUCTION 

This chapter deals with the control mechanism needed to maintain the system 

frequency. The topic of maintaining the system frequency constant is commonly 

known as AUTOMATIC LOAD FREQUENCY CONTROL (ALFC). It has got other 

nomenclatures such as Load Frequency Control, Power Frequency Control, Real 

Power Frequency Control and Automatic Generation Control. 

The basic role of ALFC is: 

1. To maintain the desired megawatt output power of a generator matching 

with the changing load. 

2. To assist in controlling the frequency of larger interconnection. 

3. To keep the net interchange power between pool members, at the 

predetermined values. 

The ALFC loop will maintain control only during small and slow changes in load 

and frequency. It will not provide adequate control during emergency situation 

when large megawatt imbalances occur. We shall first study ALFC as it applies to 

a single generator supplying power to a local service area. 



2.   REAL POWER CONTROL MECHANISM OF A GENERATOR 

The real power control mechanism of a generator is shown in Fig. 1. The main 

parts are: 

1) Speed changer    2) Speed governor   3) Hydraulic amplifier   4) Control valve.  

They are connected by linkage mechanism. Their incremental movements are in 

vertical direction. In reality these movements are measured in millimeters; but in 

our analysis we shall rather express them as power increments expressed in MW 

or p.u. MW as the case may be. The movements are assumed positive in the 

directions of arrows.   

Corresponding to “raise” command, linkage movements will be: 

“A” moves downwards; “C” moves upwards; “D” moves upwards; “E” moves 

downwards. This allows more steam or water flow into the turbine resulting 

incremental increase in generator output power. 

When the speed drops, linkage point “B” moves upwards and again generator 

output power will increase.           



Fig. 1 Functional diagram of real power control mechanism of a generator  

 

 



2.1   SPEED GOVERNOR 

The output commend of speed governor is ΔPg which corresponds to movement 

ΔxC. The speed governor has two inputs: 

1) Change in the reference power setting, ΔPref 

2) Change in the speed of the generator, Δf, as measured by ΔxB. 

It is to be noted that a positive  ΔPref will result in positive ΔPg  A positive Δf will 

result in linkage points B and C to come down causing negative ΔPg. Thus 

ΔPg = ΔPref - 
R

1
 Δf                                                                                                 (1) 

Here the constant R has dimension hertz per MW and is referred as speed 

regulation of the governor. 

Taking Laplace transform of eq. 1 yields 

ΔPg (s) = ΔPref (s) - 
R

1
 Δf (s)                                                                                        (2) 
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Fig. 2 Block diagram of speed governor 

ΔPg = ΔPref - 
R

1
 Δf                                                                                                         (1) 

Here the constant R has dimension hertz per MW and is referred as speed 

regulation of the governor. 

Taking Laplace transform of eq. 1 yields 

ΔPg (s) = ΔPref (s) - 
R

1
 Δf (s)                                                                                        (2) 

The block diagram corresponding to the above equation is shown in Fig. 2. 
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2.2   HYDRAULIC VALVE ACTUATOR 

The output of the hydraulic actuator is ΔPv. This depends on the position of main 

piston, which in turn depends on the quantity of oil flow in the piston. For a small 

change ΔxD in the pilot valve position, we have 

ΔPv = kH   ΔxD dt                                                                                                        (3) 

The constant  “kH” depends on the orifice, cylinder geometries and fluid pressure. 

The input to ΔxD are ΔPg and ΔPv. It is to be noted that for a positive ΔPg, the 

change  ΔxD is positive. Further, for a positive ΔPv, more fuel is admitted, speed 

increases, linkage point B moves downwards causing linkage points C and D to 

move downwards resulting the change ΔxD as negative. Thus 

ΔxD  =  ΔPg  -  ΔPv                                                                                                         (4) 



Laplace transformation of the last two equations are: 

ΔPv(s) = 
s

kH  ΔxD (s) 

ΔxD(s)  =  ΔPg(s)  -  ΔPv(s) 

Eliminating ΔxD and writing ΔPv (s)  in terms of  ΔPg (s), we get 

ΔPv (s)  =  
HTs1

1


  ΔPg (s)                                                                                (5) 

where TH is the hydraulic time constant given by 

TH = 
Hk

1
                                                                                                                 (6) 



Fig. 3 Block diagram of speed governor together with hydraulic valve actuator 
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In terms of the hydraulic valve actuator’s transfer function GH (s), eq. 5 can be 

written as 

GH (s)  =  
(s)PΔ

(s)PΔ

g

v   =  
HTs1

1


                                                                                      (7) 

Hydraulic time constant TH typically assumes values around 0.1 sec. The block 

diagram of the speed governor together with the hydraulic valve actuator is 

shown in Fig. 3. 
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2.3   TURBINE – GENERATOR 

In normal steady state, the turbine power PT keeps balance with the 

electromechanical air-gap power PG resulting in zero acceleration and a constant 

speed and frequency. 

During transient state, let the change in turbine power be ΔPT and the 

corresponding change in generator power be ΔPG .             

The accelerating power in turbine generator unit  = ΔPT - ΔPG  

Thus accelerating power =  ΔPT (s) - ΔPG (s)                                                       (8)             

If  ΔPT - ΔPG is negative, it will decelerate. 



The turbine power increment ΔPT depends entirely upon the valve power 

increment ΔPv and the characteristic of the turbine. Different type of turbines will 

have different characteristics.  Taking transfer function with single time constant 

for the turbine, we can write 

ΔPT(s)  =  GT  ΔPv(s)  =  
TTs1

1


  ΔPv (s)                                                                   (9) 

The generator power increment ΔPG depends entirely upon the change ΔPD in the 

load PD being fed from the generator. The generator always adjusts its output so 

as to meet the demand changes ΔPD. These adjustments are essentially 

instantaneous, certainly in comparison with the slow changes in PT. We can 

therefore set 

ΔPG = ΔPD  i.e.  ΔPG (s) = ΔPD (s)                                                                          (10) 

 



Fig. 4 Block diagram corresponding to primary loop of ALFC excluding   

          power system response 
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_ 

ΔPG (s) = ΔPD (s) 

ΔPT (s) – ΔPD(s) 

In view of equations 8,9 and 10, 

Accelerating power  = ΔPT (s) - ΔPG (s)                    (8) 

ΔPT(s)  =  GT  ΔPv(s)  =  
TTs1

1


  ΔPv (s)                  (9) 

ΔPG (s) = ΔPD (s)                                                        (10)  

the block diagram developed is updated as shown in Fig. 4. This corresponds to 

the linear model of primary ALFC loop excluding the power system response. 
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3.   STATIC PERFORMANCE OF SPEED GOVERNOR 

The present control loop shown in Fig. 4 is open. We can nevertheless obtain 

some interesting information about the static performance of the speed governor. 

The relationship between the static signals (subscript “0”) is obtained by letting  

s        0. As  GH(0)  =  GT(0)  =  1 we obtain directly from Fig. 4 

ΔPT 0  =  ΔPref 0  -  
R

1
 Δf 0                                                                                            (11) 

Note that at steady state, ΔPT is equal to ΔPG.   i.e.   ΔPT 0  =  ΔPG 0   

We consider the following three cases. 

R

1
 

GH GT 



ΔPT 0  =  ΔPref 0  -  
R

1
 Δf 0                                                                                            (11) 

Case A 

The generator is synchronized to a network of very large size, so large in fact, 

that its frequency will be essentially independent of any changes in the power 

output of this individual generator (“infinite” network). Since Δf0 = 0, the above 

eq. becomes 

ΔPT 0  =  ΔPref 0                                                                                                             (12) 

Thus for a generator operating at constant speed,(or frequency) there exists a 

direct proportionality between turbine power and reference power setting. 



Thus for a generator operating at constant speed, (or frequency) there exists a 

direct proportionality between turbine power and reference power setting. 

ΔPT 0  =  ΔPref 0   i.e.  when the generator is operating at constant frequency, if the 

speed changer setting is INCREASED,(DECREASED) turbine output power will 

increase (decrease) to that extent. 

Example 1 

A 100-MW, 50-Hz generator is connected to “infinite” network. How would you 

increase its turbine power by 5 MW? 

Solution 

Its turbine power can be increased by 5 MW by simply giving a “raise” signal of 5 

MW to the speed changer motor. 



Case B 

Now we consider the network as “finite”. i.e. its frequency is variable. We do, 

however, keep the speed changer at constant setting. i.e. ΔPref = 0. From eq. (11)      

ΔPT 0  =  ΔPref 0  -  
R

1
 Δf 0               (11)          we obtain 

ΔPT 0  =   -  
R

1
 Δf 0                                                                                                       (13) 

1.   The above eq. shows that for a constant speed changer setting, the static 

increase in turbine power output is directly proportional to the static frequency 

drop.  

2.   The above eq. (13) can be rewritten as  Δf 0 = - R ΔPT 0. This means that the plot 

of f 0 with respect to PT 0 (or PG 0) will be a straight line with slope of – R. 

We remember that the unit for R is hertz per MW. In practice, both the frequency 

and the power can be expressed in per unit.  



? 

52 Hz 

50 Hz 

0 100 MW 

0.1 Hz 

Example 2 

Consider 100-MW 50-Hz generator in the previous example. It has a regulation 

parameter R of 4 %. By how much will the turbine power increase if the frequency 

drops by 0.1 Hz with the speed changer setting unchanged. 

Solution 

Regulation is 4%. 4% of 50 = 2 Hz. This means that for frequency drop of 2 Hz the 

turbine power will increase by 100 MW.   

Thus R = 
100

2
 = 0.02 Hz per MW 

It is given Δf 0 = - 0.1 Hz 

In eq. (11),     ΔPT 0  =  ΔPref 0  -  
R

1
 Δf 0 

setting ΔPref as zero,    ΔPT 0  =  -  
R

1
 Δf 0   i.e.     ΔPT 0 = - 

0.02

1
 (- 0.1) = 5 MW 

Thus the turbine power will increase by 5 MW. 

We can also get the result using symmetrical triangles. 
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50 Hz 

0 100 MW 

0.1 Hz 

? 

Example 3 

Consider again 100-MW, 50-Hz generator in the previous example. If the 

frequency drops by 0.1 Hz, but the turbine power remains unchanged, by how 

much should the speed changer setting be changed? 

Solution 

As  ΔPT 0  = 0, from eq.(11), ΔPT 0  =  ΔPref 0  -  
R

1
 Δf 0     we have  ΔPref 0  =  

R

1
 Δf 0 

Given that   

R = 0.02 Hz per MW  and  Δf 0 = - 0.1 Hz 

ΔPref 0  =  
0.02

1
 x (- 0.1) = - 5 MW 

Therefore, speed changer setting must be lowered by 5 MW 



Case C 

In general case, changes may occur in both the speed changer setting and 

frequency in which case the relationship ΔPT 0  =  ΔPref 0  -  
R

1
 Δf 0 applies.  

For a given speed changer setting, ΔPref 0 = 0 and hence Δf0 = - R ΔPT 0.                 

In a frequency-generation power graph, this represents a straight line with a 

slope = - R.  

For a given frequency, Δf 0 = 0 and hence ΔPT 0  =  ΔPref 0. This means that for a 

given frequency, generation power can be increased or decreased by suitable 

raise or lower command. 

Thus the relationship ΔPT 0  =  ΔPref 0  -  
R

1
 Δf 0 represents a family of sloping lines 

as depicted in Fig. 5, each line corresponding to a specific speed changer setting. 
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The thick line shows that corresponding to 100% rated frequency, the output 

power is 100 % of rated output. But for the new speed changer setting as shown 

by the dotted line, for the same 100% rated frequency, output power is 50 % of 

rated output. Hence the power output of the generator at a given frequency can be 

adjusted at will, by suitable speed changer setting. Such adjustment will be 

extreme importance for implementing the load division as decided by the optimal 

policy. 
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Fig. 5 Static frequency-power response of speed governor (R = 0.04 p.u.) 

Speed changer is set such that at 

100% rated frequency, output is 100% 

rated output power. 

Speed changer is set such that at 

100% rated frequency, output is 50% 

rated output power. 



Let the governor characteristic of two units be 10 and  20.  Let the operating 

frequency be fr.  Then load shared by unit 1 and 2  are  P1
0 and P2

0.  If the economic 

division of load dictates the load sharing as  P1
’ and  P2

’,  the governor 

characteristics should be shifted to 1’ and  2’  as shown in Fig. below. 
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Example 

Two  synchronous  generators  operating  in parallel  supply a total load of 200 

MW.The ratings of the machines 1 and 2 are 100 MW and 200 MW.  Machines 1 

and 2 have governor droop characteristic of 4% and 3% respectively, from no 

load to full load.  Assume that at full load, machines run at rated speed and the 

system frequency is 50 Hz.  Calculate the load taken by each machine and the 

operating frequency. 

Solution 

 

 

 

 

 

 

The figures show the characteristics of the machines. 
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Let x MW be the load taken by the machine 1. Then the load taken by the  

machine 2 is 200-x MW.  Both should operate at same speed and frequency.  

Equating the common frequency:        )x(200
200

3
103x

100

4
104   

On solving the above,   x = 72.73 MW  and  200 - x = 127.27 MW.  Thus 

Load on machine 1 =  72.73 MW;                        Load on machine 2 =127.27 MW 

Operating frequency = )72.73(
100

4
104  = 101.09%   

                                    = )101.09(
100

50
 =  50.545 Hz. 
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Example 4 

Two generators are supplying power to a system. Their ratings are 50 and 500 

MW respectively. The frequency is 50 Hz and each generator is half-loaded. The 

system load increases by 110 MW and as a result the frequency drops to 49.5 Hz. 

What must the individual p.u. regulation be if the two generators should increase 

their turbine powers in proportional to their ratings? 

Solution 

Generator ratings:   50 MW     500 MW ;      Initial loadings:    25 MW     250 MW 

Change in load = 110 MW;     Change in frequency = - 0.5 Hz 

Required changes in turbine power:     10 MW     100 MW (Proportional to ratings) 

Since Δf0 = - R ΔPT 0,         Regulation = - (change in frequency) / (change in power) 

Smaller unit: R = - 
10

0.5 -
= 0.05 Hz per MW;  R = - 

50 / 10

50 / 0.5- 
 = 0.05 p.u. Hz / p.u.MW 

Larger unit: R = - 
100

0.5 -
= 0.005 Hz per MW; R  = -

500 / 100

50 / 0.5- 
 = 0.05 p.u. Hz / p.u.MW 

The above result teaches us that generators working in parallel should have 

same regulation (expressed in p.u. based on their own rating) in order to share 

the load changes in proportional to their ratings. 



3.   CLOSING THE ALFC LOOP 

We observed earlier that the loop in Fig. 4 is “open”. We now proceed now to 

“close” it by finding a mathematical link between ΔPT and Δf. As our generator is 

supplying power to a conglomeration of loads in its service area, it is necessary 

in our following analysis to make reasonable assumptions about the “lumped” 

area behavior. We make these assumptions: 

1. The system is originally running in its normal state with complete power  

balance, that is, PG
0 = PD

0 + losses. The frequency is at normal value f 0. All 

rotating equipment represents a total kinetic energy of W0
kin MW sec. 

2. By connecting additional load, load demand increases by ΔPD which we 

shall refer to as “new” load. (If load demand is decreased new load is 

negative). The generation immediately increases by  ΔPG to match the new 

load, that is ΔPG = ΔPD. 



3.  It will take some time for the control valve in the speed governing system to 

act and increase the turbine power. Until the next steady state is reached, the 

increase in turbine power will not be equal to ΔPG. Thus there will be power 

imbalance in the area that equals ΔPT - ΔPG i.e. ΔPT – ΔPD. As a result, the 

speed and frequency change. This change will be assumed uniform 

throughout the area. The above said power imbalance gets absorbed in two 

ways. 1) By the change in the total kinetic K.E. 2) By the change in the load, 

due to change in frequency. 

Since the K.E. is proportional to the square of the speed, the area K.E. is  

Wkin=  W0
kin  (

0f

f
)2  MW sec.                                                                            (14) 

The “old” load is a function of voltage magnitude and frequency. Frequency 

dependency of load can be written as 

D = 
f

PD




  MW / Hz                                                                                                 (15) 



Thus    ΔPT – ΔPD =  
dt

d
(Wkin)  +  D  Δf                                                                (16) 

Noting that   f = f 0 + Δf  

Wkin =  W
0

kin ( 0

0

f

ff 
) 2  =  W0

kin [ 1 +  
0f

f 2 
 +  (

0f

f
)2 ]     W0

kin ( 1 + 2 
0f

f
)      (17) 

dt

d
(Wkin)  = 

0

kin
0

f

 W2
 

dt

d
( Δf ) 

Substituting the above in eq. (16) 

ΔPT – ΔPD  =   
0

kin
0

f

 W2
 

dt

d
( Δf )  +  D  Δf    MW                                                  (18) 

By dividing this equation by the generator rating Pr and by introducing per-

unit inertia constant 

H  =  
r

kin
0

P

W
  MW sec / MW  (or sec)                                                                     (19) 

it takes on the form 

ΔPT – ΔPD  =   
0f

H 2
 

dt

d
( Δf )  +  D  Δf      pu MW                                                  (20) 



ΔPT – ΔPD  =   
0f

H 2
 

dt

d
( Δf )  +  D  Δf      pu MW                                                  (20) 

The ΔP’s are now measured in per unit  (on base Pr) and D in pu MW per Hz. 

Typical H values lie in the range 2 – 8 sec.  Laplace transformation of the 

above equation yields 

ΔPT(s) – ΔPD(s)  =   
0f

H 2
 s   Δf (s)  +  D  Δf (s)                                                     (21) 

                            =  [ 
0f

H 2
 s  +  D ]  Δf (s)      i.e. 

Δf (s)  =  

Ds
f

H2

1

0


 [ ΔPT(s) – ΔPD(s) ]   

Δf (s)  =  Gp (s)  [ ΔPT(s) – ΔPD(s) ]                                                                       (22) 



Fig. 6 Block diagram corresponding to primary loop of ALFC 

Power system 
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_ 

ΔPD (s) 

ΔPT (s) - ΔPD (s) 

Δf (s)  =  Gp (s)  [ ΔPT(s) – ΔPD(s) ]                                                                       (22) 

where 

Gp (s)  =  

Ds
f

H2

1

0


  =   

Df

2H
 s  1

1/D

0


  =    
p

p

T s  1

K


                                                   (23) 

Kp = 
D

1
                            (24)                                           Tp = 

Df

H 2
0

                      (25) 

Equation (22) represents the missing link in the control loop of Fig. 4. By 

adding this, block diagram of the primary ALFC loop is obtained as shown in 

Fig. 6. 
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Example 5 

Primary ALFC loop parameters for a control area are: 

Total rated capacity Pr = 2000 MW 

Normal operating load P0
D = 1000 MW 

Inertia constant H = 5.0 sec. 

Regulation = 2.0 Hz / p.u. MW 

Assume that the load-frequency dependency is linear, meaning that the load 

would increase one percent for one percent frequency increase. 

Obtain the power system transfer function. 

Solution 

D = 
f

P D
0




 = 

50 of % 1

1000 of % 1
 = 

0.5

10
 = 20 MW / Hz = 

2000

20
 = 0.01  p.u. MW / Hz 

KP = 
D

1
 = 100 Hz / p.u. MW;    Tp = 

Df

H 2
0

 = 
0.01 x 50

5 x 2
 = 20 sec. 

Thus    Gp (s)  =  
p

p

T s  1

K


  =  

s 20  1

100


 



Fig. 6 a Reduced block diagram 

Δf (s) - ΔPD (s) 

+ 
- 

ΔPref (s) = 0 

Δf (s) 

+ 

_ 
ΔPg (s) ΔPv (s) ΔPT (s) 

+ 

_ 

ΔPD (s) 

4.   PRIMARY ALFC LOOP – UNCONTROLLED CASE 

The primary ALFC loop in Fig. 6 has two inputs  ΔPref and ΔPD  and one output Δf.  

 

 

 

 

 

For uncontrolled case, (i.e. for constant reference input) ΔPref = 0 and the block 

diagram shown in Fig. 6 can be simplified as shown. 

 

From this simplified diagram, we can write 

Δf (s)  =  - 

pTH

p

GGG
R

1
  1

G



 ΔPD (s)        (27) 
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4.1   STATIC FREQUENCY DROP DUE TO STEP LOAD CHANGE 

For a step load change of constant magnitude ΔPD = M, we have  ΔPD (s)  =  
s

M
 

Using the final value theorem, we readily obtain from eq. (27),  

Δf (s)  =  - 

pTH

p

GGG
R

1
  1

G



 ΔPD (s)   (27)          the static frequency drop as 

Δf0 =              [ s Δf (s) ]  =  - 

R

K
  1

K

p

p



 M   =  -  

R

1
  D

M



 Hz                                     (28) 

We introduce here the so-called Area Frequency Response Characteristic (AFRC) 

β, defined as 

β  =  D + 
R

1
     p.u. MW / Hz                                                                                      (29) 

Then the static frequency drop is given by 

Δf0  =  -  
β

M
  Hz                                                                                                           (30) 

  lim 

s      0 

 

 



Example 6 

Find the static frequency drop for 2000 MW system in the previous example 

following load increase of 1% of system rating. 

Solution 

Load increase M = 1% of 2000 MW  

                             = 20 MW = 0.01 p.u. MW 

As in previous example,  D = 0.01 p.u. MW / Hz;     R = 2 Hz / p.u. MW 

β =  D + 
R

1
 =  0.01 + 

2

1
 = 0.51 p.u. MW / Hz 

Therefore  Δf0  =  - 
0.51

0.01
 = - 0.0196 Hz;     

or frequency drop = 0.0392 % of normal frequency 
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_ 
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Example 7 

What would the frequency drop in the previous example if the speed-governor 

loop were non-existent or open? 

Solution 

 

 

 

 

 ALFC loop reduces to  

 

For a sudden load increase of M,  ΔPD (s) = 
s

M
 

Then  Δf0 =             [ s Δf (s) ] = -  Kp  M = -  
D

M
 Hz; Thus   β  =  D = 0.01 p.u. MW / Hz 

Therefore Δf0 = - 
0.01

0.01
 = - 1.0 Hz;   or  frequency drop = 2 % of normal frequency 

  lim 

s      0 
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5.   DYNAMIC RESPONSE OF PRIMARY ALFC LOOP - UNCONTROLLED CASE 

We know that     

Δf (s)  =  - 

pTH

p

GGG
R

1
  1

G



 ΔPD (s)        (27) 

Finding the dynamic response, for a step load, is quite straight forward.  Eq. (27) 

upon inverse Laplace transformation yields an expression for Δf (t). However, as 

GH, GT and Gp contain at least one time constant each, the denominator will be a  

third order polynomial resulting in unwieldy algebra.  



We can simply the analysis considerably by making the reasonable assumption 

that the action of speed governor plus the turbine generator is “instantaneous” 

compared with the rest of the power system. The latter, as demonstrated in 

Example 5 has a time constant of 20 sec, and since the other two time constants 

are of the order of 1 sec, we will perform an approximate analysis by setting TH = 

TT = 0. 

From eq. (27),   Δf (s)  =  - 

pTH

p

GGG
R

1
  1

G



 ΔPD (s)        (27)            we get 

Δf (s)    -  
s

M

Ts1

K

R

1
1

Ts1

K

p

p

p

p





  =  -  

pp

p

K  )Ts(1R

KR 


  

s

M
                                         (31) 



Δf (s)    -  
s

M

Ts1

K

R

1
1

Ts1

K

p

p

p

p





  =  -  

pp

p

K  )Ts(1R

KR 


  

s

M
                                         (31) 

Dividing numerator and denominator by R Tp  we get 
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Using the fact 
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equation (32) becomes 
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Making use of previous numerical values: M = 0.01 p.u. MW; R = 2.0 Hz / p.u. MW; 

Kp = 100 Hz / p.u. MW;  Tp = 20 sec. 

M  
p

p

K R 

KR 


 = 

102

2
 = 0.01961;  

p

p

TR 

KR 
 =  

40

102
 = 2.55 

Δf(s)  =  - 0.01961 [
s

1
 -  

2.55s

1


 ] 

The approximate time response is purely exponential and is given by 

Δf(t)  =  - 0.01961 ( 1 – e- 2.55 t )  Hz                                                                             (34) 



Fig. 6 a Reduced block diagram 
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Alternatively, the above result can be obtained from the reduced block diagram 

shown in Fig. 6 a . Then 
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Fig. 7 Response of primary loop of ALFC 

Fig. 7 shows this response. For comparison, the response with the inclusion of 

the time constants TH  and  TT is also shown. 

               

It is to be observed that the primary loop of ALFC does not give the desired 

objective of maintaining the frequency constant. We need to do something more 

to bring the frequency error to zero. Before discussing the necessary control 

which can make the frequency error to zero, we shall shed some light on to the 

physical mechanism in the primary loop of ALFC. 



5.1   PHYSICAL INTERPRETATION OF RESULTS  

When the load is suddenly increased by 1% (20 MW), where did this power come 

from? Certainly it must have come from somewhere as the load increase of 20 

MW has been met with instantaneously. 

In the milliseconds following the closure of the switch, the frequency has not 

changed a measureable amount, speed governor would not have acted and hence 

turbine power would not have increased. In those first instants the total additional 

load demand of 20 MW is obtained from the stored kinetic energy, which 

therefore will decrease at an initial rate of 20 MW. Release of KE will result in 

speed and frequency reduction. As seen in eq.(34),  

Δf(t)  =  - 0.01961 ( 1 – e- 2.55 t )  Hz                                                                             (34) 

initially frequency reduces at the rate of 0.01961 x 2.55 = 0.05 Hz / sec. The 

frequency reduction causes the steam valve to open and result in increased 

turbine power. Further, the “old” load decreases at the rate of D = 20 MW / Hz. 



In conclusion, the contribution to the load increase of 20 MW is made up of three 

components: 

1.   Rate of decrease of kinetic energy from the rotating system 

2.   Increased turbine power 

3.   “Released” old customer load 

Initially the components 2 and 3 are zero. Finally, the frequency and hence the KE 

settle at a lower value and the component 1 becomes zero. In between, 

component 1 keeps decreasing and components 2 and 3 keep increasing. Let us 

compute components 2 and 3 at steady state condition. 

We know that with 4% regulation 

R = 
2000

50 of 4%
 = 

2000

2
 = 0.001 Hz / MW.  Further Δf0 = - 0.01961 Hz.   

Increased generation ΔPG = ΔPT = - 
R

1
 Δf0 =  

0.001

0.01961
 = 19.61 MW 

Value of D (Example 5) = 20 MW / Hz 

Released “old” customer load = D x Δf0 = 20 x 0.01961 = 0.392 MW 

These two components add up to 20 MW. Note that the largest contribution is 

from new generation. 



6.   PROPORTIONAL PLUS INTEGRAL CONTROL ( Secondary ALFC loop) 

It is seen from the previous discussion that with the speed governing system 

installed in each area, for a given speed changer setting, there is considerable 

frequency drop for increased system load. 

 

In the example seen, the frequency drop is 0.01961 Hz for 20 MW. Then the steady 

state drop in frequency from no load to full load ( 2000 MW ) will be 1.961 Hz. 

 

System frequency specification is rather stringent and therefore, so much change 

in frequency cannot be tolerated.  In fact, it is expected that the steady state 

frequency change must be zero. In order to maintain the frequency at the 

scheduled value, the speed changer setting must be adjusted automatically by 

monitoring the frequency changes.   



For this purpose, INTEGRAL CONTROLLER is included. In the integral controller 

the frequency error is first amplified and then integrated.  Further, a negative 

polarity is also included so that a NEGATIVE frequency deviation will give rise to 

RAISE command. The signal fed into the integrator is referred as Area Controlled 

Error (ACE).  For this case ACE = fΔ .  Thus 

 dtfΔKPΔ Iref                                                                                                               (35) 

Taking Laplace transformation                                                                            

)s(FΔ
s

K
)s(PΔ I

ref                                                                                                          (36) 

The gain constant KI controls the rate of integration and thus the speed of 

response of the loop. 



Fig. 8 Block diagram corresponding to complete ALFC 
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For this signal Δf (s) is fed to an integrator whose output controls the speed 

changer position resulting in the block diagram configuration shown in Fig. 8. 

 

 

 

 

 

 

 

 

 

As long as an error remains, the integrator output will increase, causing the 

speed changer to move.  When the frequency error has been reduced to zero, the 

integrator output ceases and the speed changer position attains a constant value.  

 

Integral controller will give rise to ZERO STEADY STATE FREQUENCY ERROR 

following a step load change because of the reason stated above. 
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Fig. 9 Reduced block diagram 

Fig. 10 Reduced block diagram 

_ Δf (s) + 
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Referring to the block diagram of single control area with integral controller 

shown in Fig. 8, input to THG  is - )s(fΔ
s

K I  -  
R

1
 Δf (s)    i.e. 

- [ 
s

K I  + 
R

1
 ] Δf (s). Using this, the block diagram in Fig. 8 can be reduced as 

shown in Fig. 9 and 10.   
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Fig. 10 Reduced block diagram 
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Therefore      Δf (s)  =  -  (s)ΔP

GG
R

1
GG

s

K
1

G
D

pHTpHT
I

p



                                  (37) 

The above equation is much more general.  For a given  )s(PΔ D ,  )t(fΔ  can be 

obtained by taking Laplace inverse transform.   

By setting IK   as zero, we get the expression for  Δf (s)   corresponding to 

uncontrolled case, as seen by eq. (27). 
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Δf (s)  =  -  (s)ΔP

GG
R

1
GG

s

K
1

G
D

pHTpHT
I

p



             (37) 

 

6.1 STATIC FREQUENCY DROP FOLLOWING A STEP LOAD CHANGE 

Let the step load change be ΔPD, which is equal to M. Then ΔPD(s) = 
s

M
 

Using final value theorem, 

 

Δf0  =              [ s Δf (s) ]                                                                                           (38) 
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       = 0                                                                                                                         (39) 

Thus static frequency drop due to step load change becomes zero, which is a 

desired feature we were looking. This is made possible because of the integral 

controller that has been introduced. 
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6.2  DYNAMIC ANALYSIS 

Δf (s)  =  -  (s)ΔP

GG
R

1
GG

s

K
1

G
D

pHTpHT
I

p



                      (37) 

Let us assume time constants TH and TT as zero as we did in Section 5. Then 

GH T = 1. For a step load change of ΔPD = M, from eq. (37) we get 

Δf (s)  =  -  
s

M

T s  1

K

R

1

T s  1

K

s

K
1

T s  1

K

p

p

p

pI

p

p








                                                                 (40) 

Multiplying the numerator and denominator by  s R( 1 + s Tp )  we get 

Δf (s)  =  - 
ppIp

p

KsKKR)Ts1(Rs

MKR


                                                                    (41) 
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Dividing the numerator and denominator by R Tp the above equation becomes   
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 We obtain the time response  )(tfΔ  upon Laplace inverse transformation of this 

expression in the right hand side of above equation.  Since response depends 

upon the poles of the denominator polynomial, let us examine it.  
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A second order system of type  as2 + bs + c = 0 will be stable if the coefficients a, 

b and c are greater than zero. Since this condition is met with, the system under 

consideration is STABLE. 

For a second order equation  s2 + bs + c = 0,  the roots are  
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For critical case 
 

c
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  =  0   i.e.   b2 = 4 c 

 
Now, both the roots are real, equal and negative.  For this critical case 
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Super critical case 
 

When  b2 < 4 c  the roots are complex conjugate and the solution is exponentially 

damped sinusoidal.  For this case the integral gain constant  KI  is obtained from 

2
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      i.e.    KI    KI crit                                          (45) 

 

When KI    KI crit  the system is said to be super-critical.  Due to damping present, 

the final solution will tend to zero.  However, the solution will be oscillatory type. 



Sub-critical case 
 

When  b2 > 4 c  the roots are real and negative.  For this case, the integral gain 

constant  KI  is given by  
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  i.e.    KI     KI crit                                                               (46) 

 
This case is referred as sub-critical integral control.  In this case the solution 

contains terms of the type  e – α1t  and e – α2t
  and it is non-oscillatory.  However, 

finally the solution will tend to zero. 

 

Thus the integral controller system is STABLE and ISOCHRONOUS  i.e.  following 

a step load change, the frequency error always returns to zero. The dynamic 

response for different values of  KI  are shown in Fig. 11. 



In practical system  TH and  TT  will not be zero;  but will have small values.  When 

TH =  80 m sec;  TT = 0.3 sec and  Tp = 20 sec., dynamic response for different 

integral gain constant  KI will be as shown in Fig. 12. 

                                                 



7.   TWO-AREA SYSTEM 

A control area is characterized by the same frequency throughout. This 

tantamount to saying that the area network is “rigid” or “strong”. In the single-

area case we could thus represent the frequency deviation by the single variable 

Δf. In the present case we assume each area individually “strong”. Having 

interconnected them with a “weak” tie-line therefore leads us to the assumption 

that the frequency deviations in the two areas can be represented by two 

variables Δf1 and Δf2 respectively. 

7.1   MODELING THE TIE-LINE and BLOCK DIAGRAM FOR TWO-AREA SYSTEM 

In normal operation the power flows in the tie-line connecting the areas 1 and 2 is 

given by 

P0
12 = )δ(δsin

X

VV
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0

2

0

1

                                                                                 (47) 

where δ1
0 and δ2

0 are the angles of end voltages V1 and V2 respectively. The order 

of the subscripts indicates that the tie-line power is defined in direction 1 to 2. 



Knowing dy/dx = Δy/Δx, for small deviations in angles δ1 and δ2 the tie-line power 

changes by an amount 

ΔP12   )δ(δcos
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 (Δδ1 – Δδ2)                                                         (48) 

We now define the “synchronizing coefficient” of a line as 

T0 = )δ(δcos
X
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1

     MW / rad.                                                              (49) 

Then the tie-line power deviation is      ΔP12 =  T0 (Δδ1 – Δδ2)  MW                       (50) 

We like to have ΔP12 in terms of frequency deviations Δf1 and Δf2. We know 

f = 

t

0

dtfπ2δThusdtfΠ2dδi.e.;
dt

dδ

π2

1

π2

ω
                                      (51) 

and hence          Δδ = 2 π 
t

dtΔf                                                                               (52) 

Expressing tie-line power in terms of  Δf1 and Δf2 we get 

ΔP12 = 2 π T0  ( 
t

1 dtΔf  -  
t

2 dtΔf )                                                                           (53) 



Fig. 13  Representation of Tie-lone power flow 
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ΔP12 =  2 π T0  ( 
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t

2 dtΔf )                                                                            (53) 

Taking Laplace transformation of the above eq. we get 

ΔP12(s)  =  
s

Tπ  2 0 [ Δf1 (s) – Δf2 (s) ]                                                                       (54)                                                                

Representing this equation in terms of block diagram symbols yields the diagram 

in Fig. 13. 

 

 

 

 

 

Tie-line power ΔP12 shall be treated as load in area 1. Similar to power balance eq.  

Δf (s)  =  Gp (s)  [ ΔPT(s) – ΔPD(s) ]       (22)   we can write 

Δf1 (s)  =  Gp1 (s)  [ ΔPT1(s) – ΔPD1(s) – ΔP12(s)]                                                     (54 a) 

Block diagram for two-area uncontrolled system is shown in Fig. 14. 

 2 π T0  
s

1
 



Fig. 14  Block diagram representation of two area system 
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Similarly we need to add ΔP21 in area 2. Defining the tie-line power in direction 2 

to 1 as ΔP21.  

ΔP21 = - ΔP12                                                                                                          (55) 

For this reason, transfer function of -1 is introduced in the block diagram. 

Further, we remember that the powers in the single-area diagram were expressed 

in per unit of area rating. The parameters R, D and H, likewise were based on the 

same base power. When two or more areas of different ratings, are involved, we 

must refer all powers and parameters to the one chosen base power. 



ΔPT1  0  

+ 
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ΔPD1 0  
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Δf 0 
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_ 

Δf 0 

D1 Δf 0 

7.2   STATIC RESPONSE OF UNCONTROLLED TWO-AREA SYSTEM 

We shall first investigate the static response of the two-area system with fixed 

speed changer position;     i.e.     ΔPref 1  =  ΔPref 2  =  0 

We assume that the loads in each area are suddenly increased by the constant 

incremental steps ΔPD1= M1 and  ΔPD2 = M2.  At steady state, as seen from Fig. 15, 

Δf1 0 = Δf2 0 = Δf0. We shall presently limit our analysis to finding the static 

changes in frequency and tie-line power denoted by Δf0 and ΔP12 0 respectively.  

 

 

 

 

 

Note that    ΔPT1 0 =  -  
1R

1
 Δf0  and  ΔPT2 0 =  -  

2R

1
 Δf0                                     (56) 

Knowing the output of Gp1 as Δf0 input to Gp1 = D1 Δf0 . Similarly, input to Gp2 =  D2 

Δf0.  
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Consider the summing point with ΔPT1 0 , ΔPD1 0, and ΔP12 0. 

 

 

 

 

 

- 
1R

1
 Δf0  -  M1  - ΔP12 0  =  D1 Δf0   and  - 

2R

1
 Δf0 – M2 +  ΔP12 0  =  D2 Δf0   i.e. 

D1 Δf0  + 
1R

1
 Δf0  +  ΔP12 0  =  – M1;       i.e.  β1 Δf0  +  ΔP12 0  =  – M1                       (57) 

D2 Δf0  + 
2R

1
 Δf0  -  ΔP12 0  =   – M2;        i.e.  β2 Δf0  -  ΔP12 0  =  – M2                       (58) 

where area frequency response characteristic (AFRC) of  each area are defined as 

β1  =  D1  +  
1R

1
                 β2  =  D2  +  

2R

1
                               (59) 
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         β1 Δf0  +  ΔP12 0  =  – M1                       (57) 

         β2 Δf0  -  ΔP12 0  =  – M2                        (58) 

Solving the above equations (57) and (58) for  Δf0  and  ΔP12 0 we get 

Δf0  =  - 
21

21

ββ

MM




                                                                                                         (60) 

ΔP12 0  =  - ΔP21 0 =  
21

1221

ββ

MβMβ




                   (61) 

Eqns. (60) and (61) become simple if we assume identical area parameters; i.e. 

R1  =  R2  =  R;        D1  =  D2  =  D;   Then  β1  =  β2  =  β 



We then get 

Δf0  =  - 
β2

MM 21                                                                           (62) 

ΔP12 0  =  - ΔP21 0 =  
2

MM 12 
                                   (63) 

For example, if a step load change occurs only in area 2, we get 

Δf0  =  - 
β2

M2  Hz                                                                                                         (64) 

ΔP12 0  =  - ΔP21 0 =  
2

M2  p.u. MW                                                   (65) 

The above two equations tell us, in a nutshell, the advantages of pool operation: 

1.   The frequency drop will be only half that would be experienced if the areas   

      were operating alone. 

2.   50% of the added load in area 2 will be supplied by area 1 via. the tie-line. 



Example 8 

A 2000 MW control area 1 is interconnected with a 10000 MW area 2. The 2000 MW 

area has the system parameters as 

R = 2.0 Hz / p.u. MW;   D = 0.01 p.u. MW / Hz 

Area 2 has the same parameters, but on a base of 10000 MW. A 20 MW load 

increase takes place in area 1. Find static frequency drop and tie-line power 

change. 

Solution 

Let us take 2000 MW as base power. 

β1  =  0.01 + 
2

1
 =  0.51 p.u. MW / Hz 

β2 = 0.51 p.u. MW / Hz  on a base of 10000 MW 

    = 0.51 x 
2000

10000
 = 2.55 p.u. MW / Hz  on a base of 2000 MW 



M1 = 
2000

20
 = 0.01 p.u. MW 

Δf0  =  - 
2.55  0.51

0.01


 =  - 0.003268 Hz 

ΔP12 0  =  - ΔP21 0 =  - 
2.550.51

0.01 x 2.55


= - 0.008333 p.u. MW = - 16.67 MW 

Note that the frequency drop is only one sixth of that experienced by area 1 

operating alone (0.01961 Hz   compare Example 6). 

Also note that this frequency support is accomplished by an added delivery of 

16.67 MW from the larger area. 



Fig. 15  Simulation results of a two-area system 

 

7.3   DYNAMIC RESPONSE OF UNCONTROLLED TWO-AREA SYSTEM 

With the very simple turbine model that we have used, the two area system in Fig. 

14 is of eighth order for a step load change. It would therefore meaningless, to 

attempt a direct analytic approach for finding the dynamic response of the 

system. Typical simulation results for a two-area system are shown in Fig. 15.                       

               

 



Fig. 15  Simulation results of a two-area system 

 

               

 

It can be seen that the solution for Δf1(t) and Δf2(t) are oscillatory. However, 

because of system damping, finally they settle at a steady state value. Similarly, 

the solution of ΔP21(t) has oscillation at beginning and finally settle at a steady 

state value. 



7.4   TIE-LINE BIAS CONTROL FOR TWO-AREA SYSTEM 

The persistent static frequency error is intolerable. Also, a persistent static error 

in tie-line power flow would mean that one area would have to support the other 

on a steady state basis. To circumvent this, some form of reset integral control 

must be added to the two-area system.  

The control strategy of “tie-line bias control” is based upon the principle that all 

operating pool members must contribute their share to frequency control in 

addition to taking care of their own net interchange. This means that for two-area 

system, at steady state, both Δf0 and ΔP12 0 must be zero. 

To achieve these objectives, the Area Control Error (ACE) for each area consists 

of a linear combination of frequency and tie-line error. Thus 

ACE1 =  ΔP12 + B1 Δf1                                                                                                                                          (66) 

ACE2 =  ΔP21 + B2 Δf2                                                                                                                                           (67) 



The speed changer commands will thus be of the form 

ΔPref 1  =  - KI1   ( ΔP12 + B1 Δf1 ) dt                                                                         (68) 

ΔPref 2  =  - KI2   ( ΔP21 + B2 Δf2 ) dt                                            (69) 

The constants KI 1 and KI 2 are integrator gains and the constants B1 and B2 are 

the frequency bias parameters. The minus sign must be included to ensure that, 

if there is positive frequency deviation or tie-line power deviation, then each area 

should decrease its generation 

7.5   STATIC SYSTEM RESPONSE WITH TIE-LINE BIAS CONTROL 

The chosen strategy will eliminate the steady-state frequency and tie-line 

deviations for the following reasons. 

Following a step load change in either area, a new static equilibrium can be 

achieved only after the speed-changer commands have reached constant values.  



But this evidently requires that both the integrants in eqns (68) and (69) be zero; 

i.e. 

                                                          ΔP12 0 + B1 Δf 0  =  0                                           (70) 

 and     ΔP21 0 + B2 Δf 0  = 0    i.e.   - ΔP12 0 + B2 Δf 0  =  0                                           (71) 

The above two conditions can be met with only if   

Δf 0  = 0  and  ΔP21 0 = - ΔP12 0  =  0                                                    (72) 

Note that this result is independent of the values of B1 and B2. In fact, one of the 

bias parameters can be zero, and we still have a guarantee that eq. (72) is 

satisfied. Having checked use of the integral controller, let us see how they can be 

included in the block diagram. 

Laplace transform of Equations (68) and (69) gives 

ΔPref 1 (s) =  
s

I1
K

  [ΔP12 (s) + B1 Δf1 (s)];        ΔPref 2 (s) =  
s

I2
K

  [ΔP21 (s) + B2 Δf2 (s)] 
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Fig. 16  Block diagram representation of two area system with tie-line bias control 
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Questions on “Automatic Load Frequency Control” 

 

1.   What is the basic role of ALFC? 

2.   Name the main parts in the real power control mechanism of a generator. 

3.   Draw the functional diagram of real power control mechanism of a generator.    

      Explain how a “raise” command to the speed changer will result in increased    

      generator output power. 

      Discuss how speed drop will result in increased generator output power. 

4.   Draw the portion of real power control mechanism of a generator that  

      corresponds to the speed changer and the speed governor and develop its  

      block diagram. 

5.   Develop the block diagram corresponding to speed changer, speed governor  

      and the hydraulic valve actuator 

6.   Consider an uncontrolled speed governing system of a generator. Obtain the  

      relationship between frequency vs output  power at steady state condition. 



7.   Consider the speed governing system of 50 Hz, 40 MW  generator, having 4%  

      speed regulation. Find the increase in turbine power, if  the frequency drops  

       by 0.15 Hz with the speed changer setting unchanged. 

8.   Consider the speed governing system of 50 Hz, 100 MW generator, having 6%  

      speed regulation. Find the increase in frequency, if the turbine power is  

      decreased by 4 MW with the speed changer setting unchanged. 

9.   Two 50 Hz generators of rating 100 MW and 300 MW are operating in parallel.   

      Each of them has a speed regulation of 5%. They supply a total load of 320  

      MW.  Assume that the speed changers are set to give rated frequency at 100%  

      rated output power. Determine the output power of each generator and the   

      operating frequency. 



10.  The following two synchronous generators are operating in parallel: 

           Generator 1     50 MW     6 % speed regulation 

   Generator 2     50 MW     3 % speed regulation 

       i)  Determine the load taken by each generator for a total load of 80 MW when     

           the speed  changers are set to give rated speed at 100 % rated output. 

       ii) The speed changer of generator 1 is so adjusted that 80 MW load is   

 equally  shared. Find the output of generator 1 for rated speed its  

 frequency at no load and the change to be made in the speed changer. 

       iii) The speed changer of generator 2 is so adjusted that 80 MW load is  

             equally shared. Determine the output of generator 2 for rated speed,  

             its frequency at no load and the change to be made in the speed changer. 

11.   Draw the block diagram representation of uncontrolled single area power  

        system. Develop the expression for static frequency drop corresponding to  

        step load increase. Also sketch the dynamic response i) neglecting the time  

        constants of speed governor and turbine generator ii) including the time  

        constants of speed governor and turbine generator. 



12.   The data pertaining to an uncontrolled single area power system are as  

         follows: 

 Total rated capacity                  = 2500 MW 

     Nominal operating load            = 1500 MW 

      Nominal frequency                   = 50 Hz 

      Inertia constant                         = 4 sec. 

      Governor drop                           = 4 % 

 

Assume that the load frequency characteristic of the system is linear.   

For  a decrease  of 20 MW load, determine 

           a)  Steady state frequency deviation and frequency. 

b)  Change in generation ( in MW ) and increase in original load ( in MW )  

      under steady state conditions. 

c)  Find the Transfer Function of the power system. 

      d)  Also obtain the dynamic response neglecting time constants of speed  

                governor and turbine generator and sketch it. 



13. Following data pertain to uncontrolled single area power system. System 

 rating = 200 MW; Load = 100 MW; Regulation = 4%; System frequency = 50 

 Hz. Load increase = 10 MW; 1% frequency increase causes 0.8% load 

 increases. Inertia constant = 4 sec. Find steady state frequency deviation 

 and the transfer function of power system. 

14.   What is the necessity of proportional plus integral controller? 

15.   Draw the complete block diagram representation of ALFC of single area  

        system and describe the role of different components. 

16.   For a  two area system, develop the expression for change in tie-line power  

        flow  in  terms  of  change  in  frequency  of   both  the  areas and represent it  

        in the form a block diagram. 

17.   What are advantages of interconnected two area system over single area  

        system? 

18.   Draw the block diagram representation of uncontrolled two area system and  

        briefly explain. 



19.   Develop the expression for static frequency deviation and static tie line      

        power deviation for two area system subjected to sudden load changes.  

        From these expressions, justify the advantages of interconnected system. 

20.   Two uncontrolled interconnected power systems, A and B, each has a  

        speed regulation of 5 Hz / p.u. MW and stiffness D of 1.0 p.u. MW / Hz (on  

        respective capacity bases). The capacity of system A is 1500 MW and of B is  

        1000 MW. The two systems are interconnected through a tie line and are  

        initially at 50 Hz. If there is a 100 MW load change in system A, calculate the  

        change in steady state values of frequency and tie line power. 

21.   What do you understand by tie-line bias control? 

22.   Draw the block diagram representation of uncontrolled two-area system.   

        Explain how this could be modified to include the tie-line bias control.  

23.   Draw the block diagram representation of two area system with tie-line bias  

        control. 



24.   Two uncontrolled areas 1 and 2 are connected by a tie-line. System  

         parameters are: 

         Area 1  Rated capacity 5000 MW   R = 2.5 Hz / p.u. MW   D = 0.02 p.u. MW / Hz 

         Area 2  Rated capacity 2000 MW   R = 2 Hz / p.u. MW      D = 0.05 p.u. MW / Hz 

        Taking 5000 MW as the base, find the steady state frequency change and the  

        change in tie-line power flow from area 1 to 2 when 

        i)    20 MW load increase takes place in area 1. 

        ii)   20 MW load increase takes place in area 2. 

        iii)  10 MW load increase takes place in areas 1 and 2. 

        iv)  20 MW load decease takes place in area 1.   



ANSWERS 

7.   3 MW              8.   0.12 Hz 

9.   80 MW;     240 MW;     50.5 Hz 

10.  43.3333 MW;     36.6667 MW 

       45 MW;     52.7 Hz 

       60 MW;     51.8 Hz 

12.  0.015625 Hz;     50.015625 Hz 

      - 19.53125 MW;     0.46875 MW 

      
s13.33331

83.3333


;          0.015625 (1 – e- 3.2 t) Hz 

13.      - 0.0984 Hz;     
s201

125


               20.   – 0.0333 Hz;     - 40.02 MW;     40.02 MW 

24.   i)   - 0.00625 Hz  - 6.875 MW 

        ii)   - 0.00625 Hz  13.125 MW 

        iii)  - 0.00625 Hz         3.125 MW 

        iv)   0.00625 Hz    6.875 MW  



SOLUTION 

1. Mention four requirements of a power system. 

 i)    It must supply power, practically everywhere the customer demands. 

 ii)   It must be able to supply the ever changing load demand at all time. 

 iii)  The power supplied should be of good quality. 

 iv)  The power supplied should be economical. 

 v)   It must satisfy necessary safety requirements. 

2. Over voltage: Increased motor speed; vibration and mechanical damage;    

   Insulation failure 

 Under voltage: Decreased motor speed; heating due to increased current  



3. Mention three basic roles of Automatic Load Frequency Control. 

 i)   To maintain desired output power of a generator. 

 ii)  To maintain the frequency constant. 

 iii) To maintain desired tie-line power. 

4. What do you understand by “Unit Commitment Problem”? 

 Generator units are to be switched on or off to match with the varying loads. The 

 schedule of switching on and switching off the various generator units over a 

 period, say one day, such that total cost of operation over the period is minimum 

 subjected to certain constraints. 



5. Draw the schematic diagram of speed changer and speed governor and mark the 

 linkages and linkage point movements. 
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6. The speed governing system of a 40 MW, 50 Hz generator, has 3.6% speed 

 regulation. Find change in turbine power, if the frequency increases by 0.1 Hz 
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7. Draw the complete block diagram of uncontrolled single area ALFC loop. 
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 Let  load on Gen. 1 be x MW;    Load on Gen. 2 = 240 – x;    

 Equating common fre.        )x(240
150

1.5
51.5x

200

2.5
52.5  ;   

 On solving  PG1 = 151.11 MW ;    PG2 = 88.89 MW 

 Operating frequency  =  151.11X
200

2.5
51.5  = 50.6111 Hz. 

 Corresponding to PG2
’ = 75 MW, frequency f’ = 75X

150

1.5
51.5  = 50.75 Hz 

 When f’ = 50.75 Hz, with original characteristic,  PG1
’ is obtained from 

            
200

2.5
52.5  PG1

’ = 50.75;  Thus PG1
’ = 140 MW.  However, to satisfy the total load 

 of 240 MW, PG1
’ must be 165 MW. This is achieved by giving RAISE command of 25 

 MW.  



1% of 50 Hz = 0.01 x 50 = 0.5 Hz;   

 0.8% of 900 MW = 0.008 x 900 = 7.2 MW = 7.2 / 1400 = 0.005143 p.u. MW 

 D = 
0.5

0.005143
= 0.01029 p.u. MW / Hz;  Kp = 

D

1
= 

0.01029

1
= 97.18 Hz / p.u. MW 

             Tp = 
D

0
f

H2
= 

0.01029 x 50

4 x2
 = 15.55 sec.;  Thus  Gp(s) = 

pTs1

pK


= 

s15.551

97.18


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 This can be reduced as            
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 Using the final value theorem, the static frequency drop is 
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
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Fig. shows the configuration of EMS / SCADA system for a typical power system. 
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In general case, changes may occur in both the speed changer setting and frequency in 

which case the relationship ΔPT 0  =  ΔPref 0  -  
R

1
 Δf 0 applies.  

For a given speed changer setting, ΔPref 0 = 0 and hence Δf0 = - R ΔPT 0.  In a frequency-

generation power graph, this represents a straight line with a slope = - R.  

For a given frequency, Δf 0 = 0 and hence ΔPT 0  =  ΔPref 0. This means that for a given 

frequency, generation power can be increased or decreased by suitable raise or lower 

command. 

Thus the relationship ΔPT 0  =  ΔPref 0  -  
R

1
 Δf 0 represents a family of  lines with slope -R, 

each line corresponding to a specific speed changer setting. 


